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Abstract-The problem of a stationary crack in a visco--elastic body under plane strain, subjected to dynamic
loading, is formulated within the realms of the classical theory. By introducing the Laplace-transform with
respect to time the problem is reformulated in the transformed space. A line-integral is defined and it is shown
that it is path-independent. The relation between this integral and the transformed stress-intensity factor is
derived. It is indicated that the integral may be valuable for calculations of dynamic stress-intensity factors. In
order to illustrate this, a simple example is solved and some numerical results are presented.

INTRODUCTION

A USEFUL tool in fracture analysis is the path-independent i-integral proposed by Rice [1].
Beside its possible use as a criterion for crack growth (cf. [2]), it has proved to be a valuable
tool in determinations of stress-intensity factors. This is a consequence of the property of
path-independence which implies that information about the state in the vicinity of the
crack tip can be obtained by studying the far away field. However, the use of the i-integral
is limited to static cases where inertia effects can be neglected.

When high loading rates are present the inertia effects may play an important role.
The object of this paper is to derive a concept similar to the i-integral which can be applied
to such situations. We will limit ourselves to the transient response of bodies containing
a stationary crack. Of course it would be of interest to extend the concept to transient
problems of moving cracks, but this seems to be very difficult, if at all possible (d. [3J).

The integral concept discussed in this paper is not defined in the space of the original
variables, but instead in the space of a Laplace transform of the time variable. This excludes
the possibility of treating nonlinear elastic materials. On the other hand the method
enables us to handle cases for linearly visco-elastic materials.

GOVERNING EQUATIONS AND THE LAPLACE TRANSFORM
Consider a plate under plane strain, mode I conditions. The analysis applies equally

well to mode II and III cases, but these are omitted for brevity. The plate contains a
traction-free straight crack along the x I-axis (Fig. 1).

The material is assumed to be isotropic and linearly visco-elastic, thus obeying the
constitutive relations

(1)

(2)
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FIG. 1. The plane crack-problem.

U:(t)

Sij is the stress deviation tensor

(3)

and eij the strain deviation tensor

(4)

(5)

GI(t) is the relaxation-modulus for pure shear and G2(t) is relaxation modulus for pure
compressIOn.

The deformation is governed by the equations of motion

cPu·
(Jij.j = P at 2'

where p is the material density, assumed to be a constant. U i is the displacement vector,
where U 3 == 0 due to the plane strain assumption. Furthermore compatibility is ensured if

Finally the boundary conditions can be stated as

(Jijn j = Ti on ST

U j = ui on Su

(6)

(7)

(8)

nj is the normal vector of a surface element, Ti are the prescribed tractions on the surface
ST and ui are the prescribed displacements on the surface Suo In the above equations all
quantities may vary with time except nj , p, ST and Suo

A standard procedure in the analysis of dynamic problems in linear visco--elasticity is
to introduce the Laplace transform

f(p) = Loo

f(t) e - pt dt. (9)
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Assume the initial conditions to be zero. Since ST and Su are time-independent, it is
possible to apply the Laplace transform to equations (1-8). This yields

Sij = pG1eij

(Jkk = pG2ekk

- - 1 - ~
sij = (Jij-3(JkkUij

- - 1- ~

eij = Cij-3ckkUij

- 2­
(Jij.j = PP Ui

e·· = -2
1 (U..+U· .)I) I,) ),1

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

The transformed equations are similar in structure to those for a static linearly elastic
problem. We can interpret this new set of equations as an elastic problem with body
forces proportional to U i •

It is convenient to define a functional V(e i) analogous to the ordinary strain energy
density

(18)

It then follows from the linearity of the transformed constitutive relations equations
(10-13) that

(19)

Note that the inverse of V(e i) is not equal to the strain-energy density, but has a more
complicated physical interpretation.

THE PATH-INDEPENDENT INTEGRAL

Guided by the static case, let us consider the following integral along a path C em­
bracing the crack-tip (Fig. 1)

(20)

It will now be shown that 1 is independent of the choice of C. It is sufficient to show that
1 vanishes for any closed curve C*, since dX 2 and the transformed tractions 1; are zero
along the crack surface (cf. [1]). Thus let C* form a closed curve and let A* denote the
enclosed area. Using the relation

and Gauss' theorem, equation (20) can be transformed into the surface integral

- f [aV 1 2 a - - a (_ aU i ) ]Ie- = -;;;-+2:PP -;;;-(UiUi)--;- (Jij-;;;- dA.
A. UX 1 uX 1 uXj uX 1

(21)

(22)
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But from equation (19)

(23)

(24)

oV oV oa·· 0 (OU.)I) _ I

OX
I

= Oa;j OX
I

= (JijOX
I

oXj

where equation (15) and the fact that aij and aij are symmetric, have been used.
Insertion of equation (23) into equation (22) and some trivial manipulations yield

- f oU; ( 2 - oaij)Ic' = -;- pp u;---;- dA
A,uX I uXj

which vanishes on account of the transformed equations of motion (14). Thus 1 is zero
for any closed contour C* and it follows that 1 is path-independent for any curve C em­
bracing the crack-tip.

RELATION BETWEEN I AND THE STRESS-INTENSITY FACTOR

We have above established that the integral 1 is path-independent. To use it for
estimates of stress-intensity factors, we need a relation between the two. To this end let
us consider the near crack-tip field. It can be shown [4], that for elastic problems the
singularity has the same form for transient crack problems as for the static ones. Thus in
a polar coordinate system we have in the elastic case

(25)

(26)as r --+ O.

as r --+ 0
KAt)

(Jij = )2nr hkp)

K](t) I r
U; = ----;;-V2n g;(CP, v)

Here Jl. is the shear modulus and v Poisson's ratio. Performing the Laplace transform we
obtain for the purely elastic case

(28)

(27)
_ K](p)
(Jij = )2nr hicp) as r --+ 0

- K](p)J2r
U; = -- -g;(cp, v) as r --+ O.

Jl. n

Now evaluate 1 along a circular path centered at the crack-tip and with radius R. Then

(29)

From equation (29) we see that only terms of order R - 1 will give a finite contribution to
1as R --+ O. The first and the third term are both of order a;iij '" R-I according to equation
(27). The second term is of order u;u; '" R and will thus give zero contribution as R --+ O.
Then equation (29) can be written

(30)
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(32)plane stress

But since the singular parts of iJij and 6ij have exactly the same form as (1ij, cij in the static
case, the value of I takes the well-known form

- -2 1- V -2 1- v2

1= K) (p)2J; = Kdp)~ plane strain (31)

where E is Young's modulus. Similar arguments give

- -2 1
1= Kdp)E

(33)anti-plane strain.
- -2 1
I = K III21l

Now turning to the visco--elastic case, it is seen from the correspondence principle
expressed by equations (10--13) that the above derivation remains valid if we make suitable
substitutions for 11 and v into equations (26) and (31-33). Considering equations (10--13)
and using well-known relations between the elastic constants, it is found that

(34)

(35)

Thus in the visco--elastic case we have

(38)

(37)

(36)

plane stress

anti-plane strain.

plane strain
- -2 G2 +2G I
1= K[(P)pG

I
(2G

2
+G

I
)

- -2 2G2 +G I
I = K[ (p) 3pG

I
G

2

- -2 1
I = KIII(p) G-

P I

It must be pointed out that the inverse of I is not equal to the energy-release rate,
instead more complicated relations will result. The value of I lies in its computational
usefulness as will be shown by some examples below.

THE INFINITE STRIP PROBLEM

Consider a strip of purely elastic material under conditions of plane strain situated
between x 2 = ± h (Fig. 2). The strip contains a semi-infinite crack along the x I-axis from
XI = - 00 to XI = o. The boundary conditions are given by

(39)

(40)

Uo is a constant and q(t) a dimensionless function of time, which is zero for t < O.
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FIG. 2. The infinite strip.

The motion of an elastic body under plane strain is governed by the wave-equations

where

1
<1>,11 + <1>,22 = Ci <I>,tt

U I = <1>,1 - 'P,2

U2 = <1>,2 + 'P,I

(41)

(42)

(43)

(44)

and CI is longitudinal wave velocity and C2 the shear-wave velocity.
Taking the Laplace-transform of equations (41-44) and calculating the transformed

stresses give

_ _ p2_
<1>,11 +<1>,22 = C2<1>

I

(45)

(46)

UI = $,1 - 'P,2 (47)

u2 = $,2 + 'P,I (48)

all = 2/{$,II-qJ'12+1~2V($'II+$,22)J (49)

a22 = 2/{$,22 + 'P,12 + 1~2)<1>,11 + $,d] (50)

a l2 = /l(2$,12-'P,22+'P,II)' (51)

We now wish to evaluate I along the path sketched in Fig. 2. It is immediately seen
from the boundary-conditions and the definition of I that the only non-zero contributions
come from the lines crossing the strip. Furthermore because of the elliptic character of
equations (45) and (46) and the type of boundary conditions, derivatives with respect to
XI vanish as XI -+ ± 00. The path-independence of I permits us to extend the integration



A path-independent integral for transient crack problems 1113

path, so that it crosses the strip infinitely far from the crack-tip where equations (45) and
(46) then take the form

with the solutions

iii = Al e(p/c j}x, +B 1 e - (p/C j}x,

ifi = A
2

e(P/C2)X2 +B
2

e -(P/C2)X2•

For Xl -+ 00 we have the boundary-conditions

X 2 = h:u l = 0

U2 = uoq(p)

X 2 = 0:U2 = 0

0'12 = O.

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

Insertion of equations (47), (48), (54) and (55) into equations (56--59) yields after some
trivial calculations '

_ _ sinh(px2jCl)
Xl -+ +00 :u2 = uoq(p) sinh(phjC

l
)

_ 1_ 1-v-2v2 _ p COSh(PX2jCl)
822 = [f,(}22 l--'-v = uoq(P)C

l
sinh(phjCl).

For Xl -+ - 00 the boundary-condition equation (58) is replaced by

The resulting solution becomes in an analogous way

(60)

(61)

(62)

(63)

The other components of ai' iii} and iii} are either zero or do not give any contribution to
the I-integral.

Inserting the expressions equations (60-63) in!o equation (20) and performing the
integrations yield

- 2-2 2C l

I = uoq (p)pp sinh(2phjC 1) (64)
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Equation (31) gives with a little manipulation the following result for the transform
of the stress-intensity factor

(65)- uoE - [ 2phjC 1 Ji
KI(p) = (h(1 + V)2(l- 2v))-!- q(p) sinh(2ph/C I) .

This expression can then be inverted when the form of q(t) is given. Take as an example a
linearly increasing time-function

t
q(t) = ­

to
(66)

(69)

q(P) = _1_ . (67)
top2

The inverse of equation (65) c~n in this case readily be calculated by the use of an
integral transform table, Ref. [5]

u E h 4 (_1) (C t ) -l.-KI(t) = ~ -!-'-'-' L (-It 2 _I-1-4n. (68)
(h(l + v) (1- 2v)) toC 1 fi Osns(C,tj4h) n h

Here n is an integer and C~) denotes generalized binomial coefficients. Equation (68) is
plotted in Fig. 3. Note that KI(t) in Fig. 3 has been normalized with respect to the value
that would result from a quasi-static analysis

. uoE t
K =~~----==--~-----c-

I qs (h(1 + v)2(1-2v))-!-' to

It is seen that Kit) oscillates around the quasi-static value and that as time increases
the quotient rapidly approaches unity.

1·0

10o 5

C
1
t/h

FIG. 3. Normalized stress-intensity factor vs normalized time.
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In the problem considered, the exact solution could be derived rather easily. In general
this is not possible even with this method. However, the present method is a very powerful
tool for approximate or numerical analysis of crack problems. Through the Laplace­
transform a transient dynamic problem is converted to a static problem in the Laplace­
space with body forces proportional to the displacement vector. This problem can easily
be solved using e.g. a finite element method procedure for suitable values of p. Especially
l(p) can be determined. Employing some numerical inversion technique I(p) can then be
inverted and thus the stress intensity factor determined as a function of time. The value
of the I-concept is now obvious. It is often, especially with the FEM-method difficult to
get an accurate description of the field near the crack tip. The far field can be calculated
with higher accuracy and by using a suitable large radius path for 1a good result can be
expected. The method of solution presented here is obviously much simpler than exact
solution of the wave-equations directly in the original variables.

Even when an analytical solution of the transformed equations is attempted, it may
be easier to derive the far-field than the near crack-tip field. This is the case in the example
presented above. In fact it was then possible to obtain the far-field without actually solving
the boundary value problem.

This suggests that in cases where it is not possible to solve the far-field exactly, a more
or less simple approximation may lead to a good estimate of K(t). Of course the accuracy
of this estimate will depend heavily upon the type of problem considered and the form of
the approximating functions.
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A6cTpaKT-B 06JIaCTH KJIaCCHlfecKoil: TeopHH orrpeAeJUIIOTCli .pOpMyJIbI AJI1I3aAalfH CTaQROHapHoil: TpelllHHbI
B B1I3KoyrrpyroM Terre, AJIli CJIYlfali rrJIOCKoil: Ae.popMaQRH, rroA BJIHlIHHeM AHHaMH'IecKoil: Harpy3KH. nyTeM
BBeJJ;eHHH rrpe06pa30BaHHH rro JIaTlJIacy B JaBHCHMOCTH OT BpeMeHH, JJ;aeTCli HOBaH .pOPMYJIHpOBKa 3ap;a'IH
B rrpe06pa30BaHHoM rrpocTpaHcTBe. OrrpeJJ;eJUIeTCli JIHHeil:Hblil: HHTerpan, KOTOPbIil: He 3aBHCHT OT TpaeK­
TOpHH. J{aeTCli JaBHCHMOCTb MelKAY 3THM HHTerpanOM H npe06pa30BaHHbIM tPaKTOPOM HHTeHCHBHOCTH
HarrplilKeHHil:. YKa3bIBaeTcli Ha 3HalfeHHe :noro HHTerpaJIa ,ll;JIli paclfeToB .paKTOPOB HHTeHCHBHOCTH ,ll;HHaM­
HlfecKHX HarrplilKeHHR. C ~elIbIO HlIlIIOCTpaQRH :noro, nOAClfHTaH HecnOlKHbIil: rrpHMep H .a:aIOTCli HeKOTopbIe
lfHCJIeHHbIe pe3YlIbTaTbI.


